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mechanical evolution is not well-defined for such systems. We propose a natural way, math-
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free fields on the compactified Milne universe and compare our results with the matching
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1. Introduction

Dynamical evolution across space-time singularities is one of the most tantalizing, even if

speculative, questions in modern theoretical physics. Should our theories point towards a

beginning of time, it is very natural to ask what came before, and, indeed, whether there

could be anything before.

In certain model contexts, quantum evolution across space-time singularities appears

to be described by time-dependent Hamiltonians developing an isolated singularity as a

function of time at the moment the system reaches a space-time singularity. It is then

worthwhile to study such quantum Hamiltonians and establish some general prescriptions

for using them to constuct a unitary quantum evolution. Needless to say, additional spec-

ifications are needed in a Schrödinger equation involving this kind of Hamiltonians, on

account of the singular time dependence.

One of the simplest examples of such singular time-dependent Hamiltonians in systems

with space-time singularities is given by a free scalar field on the Milne orbifold (see [1 – 5]

and references therein for some recent occurrences of the Milne orbifold in models of cosmo-

logical singularities). We shall give a detailed consideration of this case in section 3. Here,

it should suffice to say that the square root determinant of the metric of the Milne orbifold

vanishes as |t| when t goes to 0. Because of that, the kinetic term in the Lagrangian for a

free field φ on the Milne orbifold will have the form |t|(∂tφ)2, and the corresponding term

in the Hamiltonian expressed through the canonical momentum πφ conjugate to φ will have

the form π2
φ/|t|, which manifestly displays an 1/|t| singularity. The position of this singu-

larity in the time dependence coincides with the metric singularity of the Milne orbifold.

While it is well-known that free fields on the Milne orbifold are not a good approxi-

mation to interacting systems, especially in gravitational theories [6, 7], analogous singular
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time dependences have recently appeared in other models, which have been the main moti-

vation for the present work. For example, 11-dimensional quantum gravity with one com-

pact dimension in a certain singular time-dependent background with a light-like isometry is

conjectured to be described by a time-dependent modification of matrix string theory [8, 9].

This model can be recast in the form of a (1+1)-dimensional super-Yang-Mills theory on

the Milne orbifold. It will thus contain in its Hamiltonian the 1/|t| time dependence typical

of the general Milne orbifold kinematics. The question of transition through the singularity

will then amount to defining a quantum system with such singular Hamiltonian. Likewise,

for the time-dependent matrix models of [10], which are conjectured to describe quantum

gravity in non-compact eleven-dimensional time-dependent background with a light-like

singularity, one obtains a quantum Hamiltonian with a singular time dependence.

In view of these examples, our present paper will address the question of how one

should define unitary quantum evolution in the presence of isolated singularities in the

time dependence of quantum Hamiltonians. Upon giving a general prescription for treating

such singularities and discussing the ambiguities it incurs, we shall proceed with analyzing

the simple yet instructive case of a free scalar field on the Milne orbifold. We shall further

discuss the relation between our prescription and the recipes for quantum evolution of this

system previously proposed in the literature (and based on considerations in the covering

Minkowski space) [11 – 13, 7].

2. Isolated singularities in time-dependent quantum Hamiltonians

Following the general remarks in the introduction, we shall consider a quantum system

described by the following time-dependent Hamiltonian:

H(t) = f(t, ε)h+Hreg(t), (2.1)

where Hreg(t) is non-singular around t = 0, whereas the numerical function f(t, ε) develops

an isolated singularity at t = 0 when ε goes to 0 (ε serves as a singularity regularization

parameter), and h is a time-independent operator. We shall be interested in the evolution

operator from small negative to small positive time. In this region, we shall assume that

we can neglect the regular part of the Hamiltonian Hreg(t) compared to the singular part.1

The Schrödinger equation takes the form

i
d

dt
|Ψ〉 = f(t, ε)h|Ψ〉. (2.2)

The solution for the corresponding evolution operator is obviously given by

U(t, t′) = exp



−i
t′
∫

t

dtf(t, ε)h



 . (2.3)

1This assumption is actually stronger than one might näıvely have thought: seemingly small interaction

terms in the Hamiltonian are sometimes responsible for large quantum effects, for instance due to degrees

of freedom becoming light. An example where this happens is the matrix big bang model [8, 9], where an

important one-loop potential is generated in the weak coupling region of the field theory. For this reason,

our present discussion will not directly apply to the matrix big bang model, though we hope to treat that

model using similar techniques in future work.
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When the regularization parameter ε is sent to 0, f(t, ε) becomes singular and U(t, t′) is

in general not well-defined.

The goal is then to modify the Hamiltonian locally at t = 0 in such a way that the

evolution away from t = 0 remains as it was before, but there is a unitary transition

through t = 0. Of course, a large amount of ambiguity is associated with such a program,

and we shall comment on it below.

The most conservative approach to the Hamiltonian modification is suggested by (2.3).

Since the problem arises due to the impossibility of integrating f(t, ε) over t at ε = 0, the

natural solution is to modify f(t, ε) locally around (in the ε-neighborhood of) t = 0 in such

a way that the integral can be taken (note that we are leaving the operator structure of

the Hamiltonian intact).

The subtractions necessary to appropriately modify f(t, ε) are familiar from the theory

of distributions. Namely, for any function f(t, ε) developing a singularity not stronger than

1/tp as ε is sent to 0, with an appropriate choice of cn(ε), one can introduce a modified

f̃(t, ε) = f(t, ε) −
p−1
∑

n=0

cn(ε)δ(p)(t) (2.4)

(where δ(p)(t) are derivatives of the δ-function) in such a way that the ε→ 0 limit of f̃(t, ε)

is defined in the sense of distributions. The latter assertion would imply that the ε → 0

limit of
∫

f̃(t, ε)F(t)dt (2.5)

is defined for any smooth “test-function” F(t), and, in particular, that the ε → 0 limit

of (2.3) becomes well-defined, if f(t, ε) is replaced by f̃(t, ε). (Note that, since f(t, ε) and

f̃(t, ε) only differ in an infinitesimal neighborhood of t = 0, this modification will not affect

the evolution at finite t).

As a matter of fact, the subtraction needed for our particular case is simpler than (2.4).

Since the n > 0 terms in (2.4) can only affect the value of the evolution operator (2.3) at

t′ = 0, if one is only interested in the values of the wave function for non-zero times, one

can simply omit the n > 0 terms from (2.4). One can then write down the subtraction

explicitly as

f̃(t, ε) = f(t, ε) −





t0
∫

−t0

f(t, ε)dt



 δ(t). (2.6)

The appearance of a free numerical parameter (which can be chosen as t0 in the expression

above, or a function thereof) is not surprising, since, if f̃(t, ε) is an adequate modification

of f(t, ε), so is f̃(t, ε) + cδ(t) with any finite c.

For the particular 1/|t| time dependence of the Hamiltonian mentioned in the intro-

duction, one can choose f(t, ε) as 1/
√
t2 + ε2, in which case f̃(t, ε) becomes

f1/|t|(t, ε) =
1√

t2 + ε2
+ 2 ln(µε)δ(t). (2.7)
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It is sometimes more appealing to replace the δ-function in (2.7) by a resolved δ-function,

in which case we find

f1/|t|(t, ε) =
1√

t2 + ε2
+ 2 ln(µε)

ε

π(t2 + ε2)
(2.8)

(with µ being an arbitrary mass scale).

One should note that it is very natural to think of the above subtraction procedure as

renormalizing the singular time dependence of the Hamiltonian. Indeed, the mathematical

structure behind generating distributions by means of δ-function subtractions is precisely

the same as the one associated with subtracting local counter-terms in order to render

conventional field theories finite. For concreteness, consider the one-loop contribution to

the full momentum space propagator in λφ3 field theory, given by the diagram

x x′

If we compute it using position space Feynman rules, we find that it is proportional to the

Fourier transform of the square of the scalar field Feynman propagator D(x, x′). However,

while the Feynman propagator itself if a distribution, its square is not. For that reason,

if one tries to evaluate the Fourier transform, one obtains infinities, since integrals of

[D(x, x′)]2 cannot be evaluated. The problem is resolved by subtracting local counter-

terms from the field theory Lagrangian, which, for the above diagram, would translate

into adding δ(x − x′) and its derivatives (with divergent cutoff-dependent coefficients) to

[D(x, x′)]2 in such a way as to make it a distribution. The mathematical structure of this

procedure is precisely the same as what we employed for renormalizing the singular time

dependences in time-dependent Hamiltonians.

We should remark upon the general status of our Hamiltonian prescription viewed

against the background of all possible singularity transition recipes one could devise. If

the only restriction is that the evolution away from the singularity is given by the original

Hamiltonian, one is left with a tremendous infinitefold ambiguity: any unitary transforma-

tion can be inserted at t = 0 and the predictive power is lost completely. One should look

for additional principles in order to be able to define a meaningful notion of singularity

transition.

Our prescription can be viewed as a very conservative approach, since it preserves

the operator structure of the Hamiltonian (the counter-terms added are themselves pro-

portional to h, the singular part of the Hamiltonian). In the absense of further physical

specification, this approach appears to be natural and can be viewed as a sort of “minimal

subtraction”. However, under some circumstances, one may be willing to pursue a broader

range of possibilities for defining the singularity transition. For example, one may demand

that the resolution of the singular dynamics must have a geometrical interpretation (at

finite values of ε). This question will be addressed in [14].

In section 3, the focus of our attention will be a particular quantum system with a

Hamiltonian quadratic in the canonical variables. For such linear systems, it is most com-

mon to analyze quantum dynamics in the Heisenberg picture, rather than in the Schrödinger

– 4 –



J
H
E
P
0
4
(
2
0
0
8
)
0
2
1

picture we have employed above for the purpose of describing our general formalism. For

convenience, we shall give a summary of the relevant derivations in appendix A. In short,

one should construct the most general classical solution of the system in the form

x(t) = Au(t) +A∗u∗(t). (2.9)

The solution to the Heisenberg equations of motion is simply obtained by replacing the

integration constants A and A∗ in the above expression by creation-annihilation operators a

and a†, which (with an appropriate normalization of u(t)) satisfy the standard commutation

relation [a, a†] = 1. The question of solving for the quantum dynamics is then most

commonly phrased in terms of constructing the mode functions u(t) and u∗(t), which are

normalized solutions to the classical equations of motion.

Our prescription may equally well be applied in such setting. One can analyze the

classical equations of motion derived from the time-dependent Hamiltonian. It is safest to

do so at finite ε, since the näıve ε → 0 limit of the classical equations of motion may not

necessarily exist. However, the ε → 0 limit of the solutions for the mode functions will

exist, and will, of course, define the same quantum dynamics as the general solution to the

Schrödinger equation given by (2.2).

3. Free fields on the compactified Milne universe

3.1 The compactified two-dimensional Milne universe

The two-dimensional Milne universe

ds2 = −dt2 + t2dx2, (3.1)

with 0 < t < +∞, corresponds to the “future” quadrant X± > 0 of Minkowski space

ds2 = −2dX+dX− via the identification

X± =
1√
2
te±x. (3.2)

The Milne universe can be compactified by the identification

x ∼ x+ 2π, (3.3)

which corresponds to the discrete boost identification

X± ∼ e±2πX±. (3.4)

The resulting space is a cone, which is singular at its tip t = 0.

The action for a free scalar field in the (compactified) Milne universe is

S =

∫

dt dx t

(

φ̇2

2
− φ′2

2t2
− m2φ2

2

)

. (3.5)
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The corresponding equation of motion

φ̈+
φ̇

t
− φ′′

t2
+m2φ = 0 (3.6)

is solved by

ψm,l(t, x) =
1

2
√

2πi

∫

IR
dw e

i
“

m√
2
X−e−w+ m√

2
X+ew+lw

”

(3.7)

=
1

2
√

2
e

lπ

2 e−ilxH
(1)
−il(mt) (3.8)

and their complex conjugates [11, 12]. Here H(1) denotes a Hankel function, and the

compactification (3.3) enforces the momentum quantization condition l ∈ . For solutions

to the equation of motion (3.6), we define the scalar product [11]

(φ1, φ2) = −i
∫ 2π

0
dx t

[

φ1(t, x)φ̇
∗
2(t, x) − φ̇1(t, x)φ

∗
2(t, x)

]

(3.9)

and the Klein-Gordon norm (φ, φ). The solutions (3.7) are normalized to have Klein-

Gordon norm −1.

To quantize the scalar field φ, one expands

φ(t, x) =
∑

k∈

[

akuk(t, x) + a†ku
∗
k(t, x)

]

, (3.10)

where the uk(x, t) have Klein-Gordon norm 1, which ensures the canonical commutation

relations

[ak, a
†
l ] = δk,l. (3.11)

We choose

uk(t, x) = ψ∗
m,k(t, x). (3.12)

Essentially because ψm,k of (3.7) are superpositions of negative frequency waves on the

covering Minkowski space, the vacuum state defined with the creation and annihilation

operators of (3.10) is an adiabatic vacuum of infinite order [11]. Note, however, that in a

compactified Milne universe (where globally defined inertial frames are absent) this partic-

ular adiabatic vacuum is no more special than any other adiabatic vacuum of infinite order

(of which there are infinitely many).

Near t = 0, the l 6= 0 mode functions behave as (see, for instance, [7])

ul ∼
eilx

2
√

2πl sinh(πl)

[

−
(

mt

2

)il

e−
πl

2
−iϕl +

(

mt

2

)−il

e
πl

2
+iϕl

]

, (3.13)

with ϕl defined by eiϕl = Γ(1 + il)

√

sinh(πl)
πl and satisfying ϕ−l = −ϕl, while

u0 ∼ 1

2
√

2

(

1 − 2i

π
log

(

mt

2

))

. (3.14)
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The mode functions are clearly singular at t = 0. The question we now want to address is

whether quantum mechanical evolution can be consistently and naturally defined beyond

t = 0.

In the literature (see, for instance, [12, 13, 7]), this question has been addressed by

extending the range of the t coordinate in the compactified Milne metric (3.1) to −∞ <

t <∞, i.e. by adding a “past cone” to the “future cone”.2 In the action (3.5), the factor t

is replaced by |t|,

S =

∫

dt dx |t|
(

φ̇2

2
− φ′2

2t2
− m2φ2

2

)

. (3.15)

The same goes for the scalar product (3.9)

(φ1, φ2) = −i
∫ 2π

0
dx |t|

[

φ1(t, x)φ̇
∗
2(t, x) − φ̇1(t, x)φ

∗
2(t, x)

]

(3.16)

and the corresponding Klein-Gordon norm.

The question then is how to define matching conditions between t < 0 mode functions

and t > 0 mode functions, i.e. how to define global mode functions. Natural globally defined

mode functions are obtained by allowing X± to be either both positive or both negative in

(3.7) (see (3.12)). As these are superpositions of negative frequency Minkowski modes, they

describe excitations above the (adiabatic) vacuum inherited from Minkowski space. The

solutions (3.7) have the property that they are analytic in the lower complexified t-plane.

For t < 0, they can be written as

ψm,l(t, x) = − 1

2
√

2
e−

lπ

2 e−ilx
(

H
(1)
il (|mt|)

)∗
, (t < 0) (3.17)

which still has Klein-Gordon norm −1. For t approaching 0 from below, we have for the

corresponding mode functions ul(t, x) = ψ∗
m,l(t, x) with l 6= 0,

ul ∼
eilx

2
√

2πl sinh(πl)

(

−
∣

∣

∣

∣

mt

2

∣

∣

∣

∣

il

e
πl

2
−iϕl +

∣

∣

∣

∣

mt

2

∣

∣

∣

∣

−il

e−
πl

2
+iϕl

)

, (3.18)

and

u0 ∼ − 1

2
√

2

(

1 +
2i

π
log

∣

∣

∣

∣

mt

2

∣

∣

∣

∣

)

. (3.19)

Note that, even though the above prescription may seem natural, and it does define

consistent matching conditions and a unitary evolution, it should not be given any priv-

ileged status. The (compactified) Milne universe contains a genuine singularity at the

origin, and the question of how the system evolves in the neighborhood of the singularity

cannot be in principle settled through an appeal to a flat Minkowski space (even though

there is nothing wrong with using the covering Minkowski space for constructing particu-

lar evolutionary prescriptions). As we shall see below, more general rules for singularity

2In some string theory contexts, it is natural to consider the full Minkowski space up to the discrete

boost identification (3.4), which in addition adds “whisker” regions with closed timelike curves. We will

not consider whisker regions in the present paper.
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crossing can be devised, with a different set of mode functions and a different vacuum state

(which, being an adiabatic vacuum of infinite order, is no better and no worse than the

one inherited from the covering Minkowski space).

Even though the modefunctions ul = ψ∗
m,l constructed above solve the equations of

motion derived from the action (3.15) at all positive and all negative t, there are no mean-

ingful equations of motion satisfied at t = 0. Correspondingly, even though the quantum

evolution defined in terms of the above prescription for the mode functions is unitary (and

essentially inherited from the covering Minkowski space), this quantum evolution can-

not be represented as a solution to the Schrödinger equation for the Hamiltonian derived

from (3.15). In what follows, we shall nevertheless be able to cast this quantum evolu-

tion in a Hamiltonian form by appropriately renormalizing the time dependences in the

Hamiltonian of the system.

3.2 Quantum Hamiltonian evolution across the Milne singularity

In section 2, we constructed a general prescription which allows to define a Hamiltonian

evolution across an isolated singularity in the time dependence of the Hamiltonian. Since

the case of a free scalar field on the Milne orbifold falls precisely into this category, it will

be instructive to compare the above consideration in terms of the covering Minkowski space

with our general prescription. We shall see that the two are in fact related, even though it

is only in the parametrization of section 2 that the evolution has a manifestly Hamiltonian

form at t = 0.

The Hamiltonian corresponding to the action (3.5) is

H =
1

2|t|

∫

dx
(

π2
φ + φ′

2
)

+
m2|t|

2

∫

dxφ2. (3.20)

Following the general guidelines presented in section 2, we shall regulate the 1/|t| time

dependence into f1/|t|(t, ε) of (2.8):

H =
1

2
f1/|t|(t, ε)

∫

dx
(

π2
φ + φ′

2
)

+
m2|t|

2

∫

dxφ2. (3.21)

Near the origin, where the mass term is negligible, the equations of motion take the

form

φ̈−
ḟ1/|t|

f1/|t|
φ̇− f2

1/|t|φ
′′ = 0 (3.22)

or, after Fourier-expanding
√

2πφ(x, t) =
∑

φl(t) exp(ilx),

φ̈−
ḟ1/|t|

f1/|t|
φ̇+ l2f2

1/|t|φ = 0. (3.23)

The general solution to this equation is

φl = Al exp

[

il

∫

f1/|t|(t, ε)dt

]

+Bl exp

[

−il
∫

f1/|t|(t, ε)dt

]

, (3.24)
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or

φl =Al exp

[

il

(

arcsinh
t

ε
+

2

π
ln(µε) arctan

t

ε

)]

+Bl

[

−il
(

arcsinh
t

ε
+

2

π
ln(µε) arctan

t

ε

)]

.

(3.25)

With ε explicitly taken to 0, this becomes

φl = Al|2µt|il sign(t) +Bl|2µt|−il sign(t). (3.26)

To construct the Heisenberg field operator (which contains all information on quantum dy-

namics) one should choose any such complex solution and, after normalizing appropriately,

promote it to a mode function, as in (3.10) (see also appendix A).

The question that will interest us here is how the quantum dynamics described by

the Hamiltonian with our “minimal subtraction” is related to the mode function prescrip-

tion (3.12) inherited from the covering Minkowski space. To this end, we shall define mode

functions u
(µ)
l that solve (3.23) and coincide with ul of (3.12) for t > 0; however, they will

generically differ from ul for t < 0. To see the relation between u
(µ)
l and ul, we construct

u
(µ)
l by choosing Al and Bl in (3.26) in such a way that it equals (3.13) for t > 0 and then

compare it, for t < 0, with (3.18).

In order to match (3.13) and (3.26) for t > 0, we impose

Al = − 1

2
√

2πl sinh(πl)

(

m

4µ

)il

e−
πl

2
−iϕl ; (3.27)

Bl =
1

2
√

2πl sinh(πl)

(

m

4µ

)−il

e
πl

2
+iϕl . (3.28)

Then, at t < 0,

u
(µ)
l =

eilx

2
√

2πl sinh(πl)

(

−
∣

∣

∣

∣

8µ2t

m

∣

∣

∣

∣

−il

e−
πl

2
−iϕl +

∣

∣

∣

∣

8µ2t

m

∣

∣

∣

∣

il

e
πl

2
+iϕl

)

. (3.29)

Comparing this expression with (3.18), we conclude that they are indeed the same if

µ =
m

4
exp

(−2ϕl + π

2l

)

. (3.30)

Note that the fact that µ depends on the Milne momentum l implies that the value of

the arbitrary parameter introduced by our renormalization procedure is different for each

of the oscillators comprising the field. For that reason, even though the covering Minkowski

space prescription turns out to be the same as our “minimal subtraction” for each of the

oscillators, for the entire field it is not. Phrased in the Hamiltonian language, the covering

space prescription for the Milne singularity transition turns out to be different from the

simplest consistent recipe one could devise, even though it is related to such simple recipe

in a fairly straightforward way.
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4. Conclusions

We have addressed the issue of how one can define a unitary quantum evolution in the

presence of isolated singularities in the time dependence of a quantum Hamiltonian. If

one demands that the operator structure of the Hamiltonian should be unaffected by regu-

larization prescriptions (the “minimal subtraction” recipe), one discovers a one-parameter

family of distinct quantum evolutions across the singularity.

For the case of free quantum fields on the Milne orbifold, the covering Minkowski

space considerations previously brought up in the literature [11 – 13, 7] turn out to be

closely related to, though distinct from, our “minimal subtraction” proposal. One explicit

advantage of our present approach is that it makes the evolution across the singularity

manifestly Hamiltonian, which was not the case in the context of the previous discussions.
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A. Linear quantum systems

In this appendix, we shall review the dynamics of linear quantum systems. This material

is very basic and well-known; however, it is usually presented in relation to a few specific

linear systems of physical interest, whereas, for our purposes, it shall be convenient to sum-

marize here the treatment of a general one-dimensional linear quantum system described

by the Hamiltonian

H =
f(t)

2
P 2 +

g(t)

2
X2 (A.1)

with f(t) and g(t) being arbitrary functions of time.

The equations of motion take the form

Ṗ = −g(t)X Ẋ = f(t)P (A.2)

or

Ẍ − ḟ

f
Ẋ + fgX = 0. (A.3)

Should one succeed finding a complex solution u(t) to this equation, one would be able to

write down the most general real solution in the form

X(t) = Au(t) +A∗u∗(t) (A.4)

with some complex constant A. In the quantum case, the solution to the Heisenberg

equations of motion will have the exact same form with A and A∗ replaced by Hermitean-

conjugate operators a and a†:

XH(t) = au(t) + a†u∗(t). (A.5)
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Our solution for the quantum dynamics shall be complete if we establish the commu-

tation relations for a and a†. Before doing so, we recall the important notion of Wronskian

for a linear differential equation. For any two solutions x1(t) and x2(t) of a second order

differential equation, their Wronskian is defined as

W [x1(t), x2(t)] = det

[

x1 x2

ẋ1 ẋ2

]

. (A.6)

It is straightforward to show that, for equation (A.3), the Wronskian of any two given

solutions satisfies

Ẇ =
ḟ

f
W. (A.7)

In other words, W/f does not depend on time. This circumstance permits to define the

“Wronskian norm” for any complex solution u(t):

‖u‖
W

= −i W [u, u∗]

f
. (A.8)

As we have just demonstrated, the value of this expression does not depend on the moment

of time one chooses to evaluate it. The familiar Klein-Gordon norm for free quantum fields,

which we use in section 3, is a direct generalization of the Wronskian norm.

The physical relevance of the Wronskian norm becomes apparent from the considera-

tion of commutators:

−i = [P (t),X(t)] =
1

f
[Ẋ,X] =

u̇u∗ − uu̇∗

f
[a, a†] = −i‖u‖

W
[a, a†]. (A.9)

Therefore, to obtain the standard commutation relations for the creation-annihilation op-

erators, [a, a†] = 1, one has to choose a complex solution u(t) with Wronskian norm 1.

References

[1] M. Berkooz and D. Reichmann, A short review of time dependent solutions and space-like

singularities in string theory, Nucl. Phys. 171 (Proc. Suppl.) (2007) 69 [arXiv:0705.2146].

[2] B. Craps, Big bang models in string theory, Class. and Quant. Grav. 23 (2006) S849

[hep-th/0605199].

[3] B. Durin and B. Pioline, Closed strings in Misner space: a toy model for a big bounce?,

hep-th/0501145.

[4] L. Cornalba and M.S. Costa, Time-dependent orbifolds and string cosmology, Fortschr. Phys.

52 (2004) 145 [hep-th/0310099].

[5] A.J. Tolley, N. Turok and P.J. Steinhardt, Cosmological perturbations in a big crunch/big

bang space-time, Phys. Rev. D 69 (2004) 106005 [hep-th/0306109].

[6] G.T. Horowitz and J. Polchinski, Instability of spacelike and null orbifold singularities, Phys.

Rev. D 66 (2002) 103512 [hep-th/0206228].

[7] M. Berkooz, B. Craps, D. Kutasov and G. Rajesh, Comments on cosmological singularities in

string theory, JHEP 03 (2003) 031 [hep-th/0212215].

– 11 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C171%2C69
http://arxiv.org/abs/0705.2146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2CS849
http://arxiv.org/abs/hep-th/0605199
http://arxiv.org/abs/hep-th/0501145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C145
http://arxiv.org/abs/hep-th/0310099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C106005
http://arxiv.org/abs/hep-th/0306109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C103512
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C103512
http://arxiv.org/abs/hep-th/0206228
http://jhep.sissa.it/stdsearch?paper=03%282003%29031
http://arxiv.org/abs/hep-th/0212215


J
H
E
P
0
4
(
2
0
0
8
)
0
2
1

[8] B. Craps, S. Sethi and E.P. Verlinde, A matrix big bang, JHEP 10 (2005) 005

[hep-th/0506180].

[9] B. Craps, A. Rajaraman and S. Sethi, Effective dynamics of the matrix big bang, Phys. Rev.

D 73 (2006) 106005 [hep-th/0601062].

[10] M. Li, A class of cosmological matrix models, Phys. Lett. B 626 (2005) 202

[hep-th/0506260].

[11] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University

Press, Cambridge U.K. (1982).

[12] N.A. Nekrasov, Milne universe, tachyons and quantum group, Surveys High Energy Phys. 17

(2002) 115 [hep-th/0203112].

[13] A.J. Tolley and N. Turok, Quantum fields in a big crunch/big bang spacetime, Phys. Rev. D

66 (2002) 106005 [hep-th/0204091].

[14] B. Craps, F. De Roo and O. Evnin, Quantum evolution across singularities: the case of

geometrical resolutions, arXiv:0801.4536.

– 12 –

http://jhep.sissa.it/stdsearch?paper=10%282005%29005
http://arxiv.org/abs/hep-th/0506180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C106005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C106005
http://arxiv.org/abs/hep-th/0601062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB626%2C202
http://arxiv.org/abs/hep-th/0506260
http://www.slac.stanford.edu/spires/find/hep/www?irn=998621
http://www.slac.stanford.edu/spires/find/hep/www?irn=998621
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SHEPD%2C17%2C115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SHEPD%2C17%2C115
http://arxiv.org/abs/hep-th/0203112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C106005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C106005
http://arxiv.org/abs/hep-th/0204091
http://arxiv.org/abs/0801.4536

